S(t)=-16t^2+144t+6

Simple and best practice solution for S(t)=-16t^2+144t+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for S(t)=-16t^2+144t+6 equation:



(S)=-16S^2+144S+6
We move all terms to the left:
(S)-(-16S^2+144S+6)=0
We get rid of parentheses
16S^2-144S+S-6=0
We add all the numbers together, and all the variables
16S^2-143S-6=0
a = 16; b = -143; c = -6;
Δ = b2-4ac
Δ = -1432-4·16·(-6)
Δ = 20833
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-143)-\sqrt{20833}}{2*16}=\frac{143-\sqrt{20833}}{32} $
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-143)+\sqrt{20833}}{2*16}=\frac{143+\sqrt{20833}}{32} $

See similar equations:

| 6x+5=654x+15=55 | | 0.86x-8.75=21-0.86x | | 2f=2.06 | | 2.5x-9=22.25 | | 9/4k+-2/9=-4-9/2k | | -38+4x=82-6x | | 8x+5=6x+0 | | 3/5x-15x=25 | | 9x+5=6x+0 | | 7x+5=6x+0 | | 37x+5=6x+0 | | 2x+5=6x+0 | | 160=137.53+0.82x | | m/2-3/5=m/3+1/10 | | 4x=-69+5(5x-3) | | p/18=-11 | | 3x+5=6x+0 | | (2/x)+7=(3/2x)+(15/4) | | 3k-6=k/2+1/3 | | 7*n+4=21 | | -36x+117=-9351 | | -4.6=1.1-0.3k | | 2/x+7=3/2x+15/4 | | -4+w/5=-34 | | -20-x=-35 | | -2/3x-3=-8/3x+3 | | 190=140.25+0.14x | | 49(x-3)=40 | | -2/7k+5/6=-1+2/3k | | x/5-34=-36 | | y-9.82=6.5 | | 42=11v-4v |

Equations solver categories